L.A. Martinelli · S. Almeida · I.F. Brown M.Z. Moreira · R.L. Victoria · L.S.L. Sternberg C.A.C. Ferreira · W.W. Thomas

Stable carbon isotope ratio of tree leaves, boles and fine litter in a tropical forest in Rondônia, Brazil

Received: 26 March 1997 / Accepted: 28 October 1997

Abstract Leaves of 208 trees were collected for isotopic analysis together with wood from 36 tree boles and 18 samples of fine litter from a *terra-firme* forest located at Samuel Ecological Reserve, Rondônia State, in the southwestern Amazon region. The range of δ^{13} C values in leaves was from -28 to -36%, with an average (±1 SD) of -32.1 ± 1.5%, which was more negative than the δ^{13} C values of bole samples (-28.4 ± 2.0%) and fine litter (-28.7 ± 2.0%). These values are within the range found for tropical and subtropical forests. Pooling the δ^{13} C values for leaf samples from trees of the same height gave averages which were positively correlated with plant height at a highly significant level, with a slope of 0.06 and an intercept of -33.3% and a correlation coefficient $r^2 = 0.70$ (P < 0.001).

Key words Amazon · Vegetation · Forest · Stable carbon isotope · Rondônia

Introduction

The abundance of stable carbon isotopes in plants of the C_3 group is controlled by environmental variables, such

L.A. Martinelli $(\boxtimes) \cdot S$. Almeida¹ \cdot M.Z. Moreira R.L. Victoria

Centro de Energia Nuclear na Agricultura,

Av. Centenário 303, Piracicaba, 13416-000, SP, Brazil

I.F. Brown

Woods Hole Research Center, Woods Hole, MA 02543, USA

L.S.L. Sternberg Department of Biology, University of Miami, Coral Gables, FL 33124, USA

C.A.C. Ferreira Departamento de Botânica, Instituto Nacional de Pesquisas da Amazônia, Manaus, 69000-000, AM, Brazil

W.W. Thomas The New York Botanical Garden, Bronx, NY 10458, USA

Present Address: ¹INPE, Av. dos Astronautas, São José dos Campos, SP, Brasil as the concentration of atmospheric CO_2 (ca) and its isotopic composition and by physiological factors, such as the CO_2 concentration inside the leaf intercellular space (ci), which in turn can be affected by environmental factors, such as light and water availability (Farquhar et al. 1982).

Tropical forest environments provide conditions promoting large variability in the carbon isotope composition of plant tissues, for several reasons: (1) a high number of plant species increasing the chances that genetic variability will affect carbon isotope composition, (2) strong variability in both CO_2 concentration and its isotopic composition due to the dilution of atmospheric CO_2 by isotopically depleted biogenic respired CO_2 (Sternberg et al. 1989; Grace et al. 1995; Buchmann et al. 1996; Lloyd et al. 1996), and (3) a gradient in light penetration inside the forest canopy (Ehleringer et al. 1986). With less light available for photosynthesis, the ratio of stomatal conductance to photosynthesis increases and the ci/ca ratio therefore, also rises (Farquhar et al. 1989). The isotopic fractionation resulting from limitation of light will produce plant organic matter depleted in ¹³C and this effect is indistinguishable from the isotopic effect produced by the contribution of biogenic CO_2 for photosynthesis. As a consequence of the last two factors, the "canopy effect" is observed, where leaves become progressively isotopically depleted towards the forest floor (Medina and Minchin 1980; Schleser and Jayasekera 1985; Medina et al. 1986; van der Merwe and Medina 1989; Sternberg et al. 1989; Kapos et al. 1993; Kruijt et al. 1996).

Most of the studies on variability in stable carbon isotopes in tropical forest plants are limited to a few number of samples collected at several heights in order to establish a gradient between leaf height and stable carbon isotope composition. As tropical forests are very diverse systems in terms of biodiversity (number of tree species) and environmental conditions (e.g., light penetration), we decided to explore in more detail the stable carbon isotope composition variability in a patch of undisturbed tropical forest. The opportunity for such study came when EletroNorte (the electric company for the north region of Brazil) supported a 2-week field campaign in 1-ha transects of *terra-firme* located in the Samuel Ecological Reserve. The objectives of this campaign were to estimate biomass, characterize nutrient cycling in the site (Brown et al. 1995) and, as already mentioned, examine the stable carbon isotope composition of the vegetation. In this study, we determined the variability in stable carbon isotopes in 208 tree leaves, 57 tree boles, and 18 litter samples found in 1 ha of *terra-firme* forest at Samuel Ecological Reserve.

This extensive database offers the opportunity to explore several aspects of the carbon stable isotope composition of tropical plants.

Materials and methods

The study was conducted in an area of 20,000 ha within the Ecological Reserve of Samuel (8°45' S, 63°23' W), bordering the Samuel Hydroelectric Reservoir. The dominant upland forest type in the reserve is tropical moist forest (classification of Holdridge et al. 1971). In the RADAMBRASIL classification, the major forest type for this region at the 1:1,000,000 scale is open forest (floresta aberta) with the presence of palms and lianas (Departamento Nacional de Produção Mineral, Brazil 1978). Sampling was conducted in three subtransects, two (subtransects 1 and 2) with an area of 3,000 m² (10 m by 300 m) and the remainder (subtransect 3) 4,000 m² (10 m by 400 m), making a total of 1 ha study area. A total of 474 trees with a diameter at 1.35 m greater than 10 cm were mapped. These individuals belonged to approximately 220 species classified in 41 botanical families. From this total, leaves of 208 trees from approximately 100 species were collected for isotopic analysis. Several leaves from branches collected for botanical classification were sampled and formed a unique sample. Only leaves with a healthy aspect were collected, avoiding yellow to brownish leaves. Leaves were collected approximately in the middle and only on one side of the crown. During the field campaign, we measured two heights for trees: a total height that corresponds to the top of the crown and one that corresponds to approximately the middle of the crown. These latter heights are listed in Appendix 1 and 2 and were those used to correlate with leaf δ^{13} C values. We are aware that the ideal situation would have been to collect leaves from more than one height within the crown and from more than one side. However, we had just one climber, who, in 10 days, climbed and sampled 474 trees. Considering the logistic difficulties faced in a tropical forest, more accurate sampling would be virtually impossible during 2 weeks. It is appropriate to remember that Bassow and Bazzaz (1997) pointed out that sampling foliage from the top of trees in natural forests poses many logistical problems, and they concluded that such difficulties have been the main cause of small sample sizes in terms of number of trees in canopy research. Working within these restrictions, we selected 57 trees for bole samples among 474 trees. These trees were selected in order to encompass a broad range of height and diameter. Samples of wood from bole were taken using a tree auger. To avoid damaging the tree, the hole made with the auger was closed and the region was covered with a fungicide. The 1-ha transect was subdivided into 40 parcels of 250 m² each. From this total, we randomly choose 18 parcels where we sampled fine litter. In each parcel we collected litter inside a square of 1-m² that was placed in five positions in each parcel: in its four corners and in the center. These five subsamples were combined into one sample representative of that parcel. For more details about the study area and transect sampling refer to Brown et al. (1995).

Samples were combusted for 12 h with CuO in evacuated tubes at 550°C. Isotope measurements were performed with a Finnigan Delta-E mass spectrometer fitted with double-inlet and doublecollector systems. Results are expressed in $\delta^{13}C$ relative to a PDB standard, defined as:

$$\delta^{13}C = (R_{\text{sample}}/R_{\text{std}}) - 1 * 1,000$$

where R_{sample} and R_{std} are the ratio ${}^{13}\text{C}:{}^{12}\text{C}$ of the sample and standard, respectively. Samples were analyzed at least in duplicate with a maximum difference of $0.2\%_{oo}$ between replicates. The average values are followed by ± 1 SD and by the number

The average values are followed by ± 1 SD and by the number of samples used to compose that average. For differences among leaves, bole, and litter, we used the *t*-test for unequal variance with the STATISTICA package. For differences among families, we used ANCOVA blocking for height, also using the STATISTICA package.

Results and discussion

The δ^{13} C values of tree leaf samples at Samuel are shown in Appendix 1. The average $\delta^{13}C$ of leaves was $-32.1 \pm 1.5\%$ (n = 208), which is significantly more negative (P < 0.001) than bole samples, with an average of $-28.4 \pm 1.8\%$ (n = 57) and fine litter, averaging $-28.7 \pm 2.0\%$ (n = 18). The box-whisker plot of δ^{13} C values for leaves, boles, and fine litter can be seen in Fig. 1. The range of values for leaves was from -36 to -28%, which is within the range found for tropical and subtropical forests (Table 1). With the exception of one very negative value (-34.2%), the δ^{13} C values in bole samples varied from -31.6 to -25.4%, and in fine litter samples from -32.0 to -24.1% (Fig. 1). The heavier isotopic values found in boles in comparison to leaves is a common feature in plants, both from tropical systems (Medina et al. 1986, 1991) and from temperate regions (Francey et al. 1985; Leavitt and Long 1986). From the 57 trees sampled for wood, 33 also provided leaf δ^{13} C values. Comparing δ^{13} C values of leaves and wood samples from these trees, for only one tree was the isotope value for wood lighter than in the leaves. In this case, the bole was 0.85% lighter than the leaves. Excluding this exception, the smallest isotope enrichment observed between leaves and wood was 1.2% and the

Fig. 1 Box-whisker plots of δ^{13} C values for leaves, boles, and fine litter. The *full circle* indicates the average values, *boxes* are the SEs of the average values, and *bars* represent 1 SD

 $\delta^{13}C~(\rlap{hoo})$ Site Forest type Reference Terra-firme Rondônia (Brazil) -32.1This study S.C. do Rio Negro (Venezuela) Terra-firme -32.1Media and Minchin (1980) Amazon river (Brazil) Várzea -32.1Martinelli et al. (1994) Paracou (French Guiana) Terra-firme -32.1Buchmann et al. (1997a) -31.6 Ducatti et al. (1991) Manaus (Brazil) Terra-firme Luquillo (Puerto Rico) Tabonuco -31.6Medina et al. (1991) Ding Hu Shan (China) -31.1Ehleringer et al. (1987) Monsoon Pantanal (Brazil) Arboreal savanna -30.9Victoria et al. (1995) -30.8Manaus (Brazil) Terra-firme Kapos et al. (1993) Luquillo (Puerto Rico) Tabonuco -30.7Fischer and Tieszen (1995) Luquillo (Puerto Rico) -30.5Fischer and Tieszen (1995) Colorado Hokaiddo (Japan)^a Broad-leaved trees -29.5Hanba et al. (1997) -29.0Jülich (Germany)^a Fagus sylvatica Schleser (1992) Utah (USA)^a Pinus contorta and P. tremuloides -27.3Buchmann et al. (1997b)

P. mariana, P. banksina, P. tremuloides

^aTemperate sites

Prince and Thompson Albert (Canada)^a

largest almost 9%. The average enrichment was $4.2 \pm 2.4\%$ (n = 33).

There are two major explanations for isotopic differences between bole and leaf organic matter. Leavitt and Long (1986) hypothesized that respiratory effects cause this difference, suggesting that respiration releases isotopically light carbon. Thus, the remaining pool available for biomass production in the bole becomes isotopically heavier. Francey et al. (1985) hypothesized that the relative timing of carbohydrate export causes this difference between leaves and boles. Apart from differences among wood and leaf samples, δ^{13} C values of bole samples showed 6% variation. This variation may be caused in part by the so-called "canopy effect." In other words, the $\delta^{13}C$ value of wood samples would be related to tree height. Pooling the δ^{13} C values for wood samples of the same tree height gave averages which were positively correlated with plant height at a highly significant level, with a slope of 0.09 and an intercept of -30.5%, and a correlation coefficient $r^2 = 91\%$ (P < 0.001). This correlation between tree height and $\delta^{13}C$ of wood implies that this tissues can also be used to test the "canopy effect" (Fig. 2). Since it is easier to sample wood than leaves in tropical forests, this may facilitate future sampling in forests. In contrast, Schleser (1992) did not find a significant correlation between wood and height in a 140-year-old Fagus sylvatica forest near Jülich, Germany. Schleser (1992) hypothesized that the CO_2 fixed by the leaves of the lower branches, which have lighter δ^{13} C values, does not supply a significant amount of carbon to the corresponding twigs and branches. Accordingly, the bole will receive carbon from the upper part of the tree, which has heavier δ^{13} C values. These heavier values would prevail all along the bole. The good correlation between δ^{13} C values of the wood in the boles and tree height in our samples, however, suggests that the same is not occurring in Samuel tropical forest. If future results confirm such a difference between tropical and tem-

-26.9

Flanagan et al. (1996)

Fig. 2 Relationship between tree height classes and average $\delta^{13}C$ of leaves (\bullet) and wood (\bigcirc) from boles. Bars represent 1 SD

perate forests, this may indicate that different mechanisms of carbon transfer are operating in tropical and temperate trees.

In general, the negative δ^{13} C values observed for tree leaves in part characterize an open system regarding the balance of stomatal conductance to photosynthesis (Farquhar et al. 1982). These negative values are determined by the higher ratios of stomatal conductance to photosynthesis, leading to high ci/ca ratios, that in turn lead to a higher fractionation in relation to the atmospheric CO₂ and consequently lower δ^{13} C values in relation to temperate systems (Table 1).

Some variability was observed among leaves of individuals of the same species collected at approximately the same height and near to each other. For instance, leaves of *Protium robustum* (tree numbers 424 and 444) differed by almost $3\%_0$. A similar difference was also found for *Tachigalia paniculata* (tree numbers 305 and 314) and for *Pseudomedia laevis* (tree numbers 331 and 396). Such inter- and intra-species variation has been found elsewhere. Berry et al. (1997) found a variation of $4\%_0$ among understory plants species in a *Pinus resinosa* plantation located south of Ottawa, Canada. They at-

Table 1 Average δ^{13} C (%) values of tree leaves in distinct sites and types of forest

tributed such variability mainly to differences in CO_2 assimilation and conductance rates among the four species. Walcroft et al. (1996) found that the gas exchange of *Pinus radiata* foliage was affected by branch morphology. They found a variation of $3.8\%_0$ between short and long *P. radiata* branches collected in New Zealand.

It is difficult to pinpoint causes for such variability since forest canopies are heterogeneous environments with regard to the light exposure of different leaves and, consequently, photosynthetic characteristics within the canopy (Lloyd et al. 1996; Bassow and Bazzaz 1997; Berry et al. 1997). Intra-specific differences caused by structural and compositional differences between leaves (Schleser and Jayasekera 1985; Hubick et al. 1986; Broadmeadow and Giffiths 1993), leaf age, and position in the crown (Gebauer and Schulze 1991) may play a role. The latter exposes leaves to different microclimates, and key environmental parameters like leaf-to-air vapor pressure (Farquhar et al. 1989) and light intensity (Ehleringer et al. 1986, 1987; Pearcy and Pfitsch 1991). The mutual effects of all these variables will determine the photosynthetic rate of a specific leaf which in turn will affect ci/ca that, together with the isotope ratio of source CO_2 is a dominant factor affecting variation in isotopic discrimination by C₃ plants (Hubick et al. 1988; Hanba et al. 1997).

Comparisons within species or even within genera were not possible with this dataset because tropical rain forests are characterized by high species diversity, with few individuals of the same species within a particular area. This makes statistical comparisons difficult, even for cases where there are enough individuals of the same species, since they tend to differ in height, precluding direct comparisons. However, there are a number of samples encompassing a broad range of heights within families. This is especially the case for four families: Burseraceae, Casealpinaceae, Lecythidaceae, and Moraceae. The average $\delta^{13}C$ of these families varies from -31.4 to -32.0%, without any statistical difference among them, tested by ANCOVA blocking for height.

Pooling the δ^{13} C values for leaf samples of the same height gave averages which were positively correlated with plant height at a highly significant level, with a slope of 0.06 and an intercept of -33.3% and a correlation coefficient $r^2 = 70\%$ (P < 0.001). Previous studies did not have a sufficient sample number to permit the use of regressions, or to evaluate the variability in the data (Medina and Minchin 1980; Schleser and Jayasekera 1985; Medina et al. 1986; van der Merwe and Medina 1989; Sternberg et al. 1989; Kapos et al. 1993). Kruijt et al. (1996), also working in Rondonia State, at Reserva Jaru, also found a good correlation between $\delta^{13}C$ of leaves and height above the forest floor. They found a broader range of variation in δ^{13} C values with height than we found in Samuel. The most depleted average value in Samuel was -34.0%, whereas in the Reserve Jaru, δ^{13} C values varied from -35.0 to -38.0% for the understory foliage. In Samuel, the most enriched average value was -31.0%, while in Reserva Jaru, a δ^{13} C value of -29% was found at 30 m height.

Given that light penetration appears to be not only a function of height but also of forest structure, we found it useful to try to find a better relationship between leaf isotopic values and forest structure. Lieberman et al. (1989) noted that the simple dichotomy of forest structure into forest and gaps could be too simplistic. Indeed, the forest at any given geographic site in Samuel was once a gap sometime in the past few hundred years. Consequently, the forest can be considered a mosaic of tree patches recovering from gap disturbance. From this perspective, the light regime and relative contribution of CO_2 from the atmosphere overhead and from respiration on the ground is not only a function of the leaf height on a given tree but also of the distribution of trees around that tree. To estimate the effect of the surrounding taller trees on the local environment of sample trees, we used Lieberman et al.'s (1989) suggestion of calculating the sine of the vertical angles between surrounding taller trees and the sample tree. These sine values were then summed for taller trees in a 10-m radius of the sample to derive a G value for each tree sampled. Due to the narrow nature of the transect (10 m), these sample circles covered only between 50 and 61% of the transect; as a result, shading by taller trees outside the transect is not incorporated. Emergent trees have a Gvalue of 0, while small trees often have G values above 10 (Table 2). The working hypothesis is that for trees of the same height, those with higher G values will have more negative $\delta^{13}C$ because the surrounding taller trees will impede penetration of overlying atmospheric air and the light intensity will be lower. This working hypothesis is based on the fact that Broadmeadow and Griffiths (1993) have shown that the stratification of CO_2 within the canopy is dependent on canopy formation, while more recently, Buchmann et al. (1996) have shown that stratification of

Table 2 Average δ^{13} C of leaves (%) and average G values composed by tree height classes (m)

Height class	Aveage $\delta^{13}C$	Avearge G
3–5	-34.00	7.32
5–7	-32.48	5.33
7–9	-32.87	6.03
9–11	-32.14	4.41
11-13	-32.31	3.85
13-15	-31.94	4.16
15-17	-32.49	2.18
17–19	-31.99	2.23
19-21	-32.05	1.28
21-23	-31.86	1.28
23–25	-31.64	1.30
25-30	-31.13	0.57
30-40	-31.21	0.49

 CO_2 within the canopy is also dependent on the stand structure and on the vegetation type.

Multiple linear regression with data from Table 2, using δ^{13} C values against height and *G* values yields $r^2 = 76\%$ (P < 0.001), which was not significantly higher than the r^2 found before. Therefore, *G* values do not help to explain the variability observed within the canopy. A variety of other mechanisms previously listed must also be playing a role in the variability of δ^{13} C values in tree leaves. But, more important, the "canopy effect" prevailed over a large number of different tree species, indicating that the δ^{13} C values of atmospheric CO₂ and light penetration within the forest canopy are the driving forces of the δ^{13} C values of tree leaves within forests.

In the introduction we listed three factors that can promote variability in δ^{13} C values in tropical forests. Bassow and Bazzaz (1997) have demonstrated that photosynthesis can vary among species and even within an individual tree in temperate forests. If this is also true for tropical forests, the high number of individuals per hectare and the high number of species would promote a highly variable environment in terms of photosynthesis, which in turn will affect the δ^{13} C values of the vegetation. In addition to variation in photosynthesis itself, it has been shown that the light gradient within the canopy and even among understory plants can be responsible for much of the variation in the δ^{13} C of tree leaves (Berry et al. 1997). This can help explain differences in δ^{13} C values of leaves collected at the same height. Both of these factors (photosynthesis and light) would affect the ci/ca ratio, which with the recycling of isotopically depleted CO₂ of biogenic origin is responsible for the δ^{13} C of the vegetation. The relative importance of these two attributes is still being debated (e.g., Lloyd et al. 1996; Sternberg 1997). Broadmeadow and Griffiths (1993) summarized the proportion of respiratory flux reassimilated by the understory vegetation from the literature – values varied from 8 to 26%.

An important feature found here was the good correlation between wood samples and tree height. Considering that canopy sampling is not trivial (Bassow and Bazzaz 1997), this fact may facilitate future research in this area.

Appendix 1 Tree height (m) and δ^{13} C values ($\%_0$) of leaves for species collected at Samuel Ecological Reserve, Rondônia

Tree	Species	Family	Height (m)	Leaf $\delta^{13}C(\%)$
1	Parkia cf. nitida Miq.	Leg-mimosaceae	12.0	-32.8
3	Pouteria sp.	Sapotaceae	17.5	-34.2
7	Duroia macrophylla Huber	Rubiaceae	9.0	-31.7
10	<i>Richardella</i> sp.	Sapotaceae	21.0	-31.5
11	Maquira guianensis Aubl.	Moraceae	12.5	-33.1
12	Bauhinia forticata Link	Leg-Caesalpiniaceae		-34.1
13	Parkia cf. nitida Miq.	Leg-Mimosaceae	24.0	-32.1
14	Oxandra xylopoides Diels	Annonaceae	22.7	-32.9
15	Licania latifolia Bth.	Chrysobalanaceae	13.5	-33.6
16	Euterpe precatoria Mart.	Palmae	14.0	-33.7
17	Brosimum guianensis (Aubl.) Huber	Moraceae	16.5	-32.0
18	Pithecellobium racemosa Ducke	Leg-Mimosaceae	16.5	-29.5
19	Naucleopsis imitans (Ducke) C.C. Berg	Moraceae	16.5	-32.4
26	Eschweilera coriacea (A.P.DC.) Mart. ex erg.	Lecythidaceae	10.7	-29.7
30	Copaifera multijuga Hayne	Leg-Caesalpiniaceae	33.3	-28.8
31	Endopleura uchi (Huber) Cuatr.	Humiriaceae	14.4	-31.4
33	<i>Copaifera</i> sp.	Leg-Caesalpiniaceae	28.3	-30.1
35	Dodecastigma intergrifolium (Lanj.) Lanj. & Sandw.	Euphorbiaceae	9.4	-32.0
37	Dialium guianense (Aubl.) Sandwith	Leg-Caesalpiniaceae	7.1	-32.9
39	<i>Rheedia</i> sp.	Guttiferae	10.1	-33.7
40	Mouriri sp.	Melastomataceae	11.1	-29.3
43	Naucleopsis glabra sp. ruce	Moraceae	15.3	-29.9
46	Eschweilera sp.	Lecythidaceae	18.2	-31.9
51	Pseudomedia laevis (R. & P.) Macbr.	Moraceae	23.6	-30.4
53	Heliocostylis tomentosa (P. & E.) Rusby	Moraceae	29.3	-28.8
58	Protium cf. carnosum A.C. Smith	Burseraceae	14.5	-32.3
61	Tymatococcus amazonicus P. & E.	Moraceae	15.8	-32.3
65	Theobroma subincanum Mart.	Sterculiaceae	18.0	-32.9
68	Tymatococcus amazonicus P. & E.	Moraceae	22.4	-31.9
76	Pseuldomedia sp.	Moraceae	19.9	-31.8
77	Undetermined	Myrtaceae	10.5	-32.7
82	Bocageopsis multiflora (Mart.) R.E. Fries	Annonaceae	24.8	-33.3
83	Theobroma subincanum Mart.	Sterculiaceae	3.5	-34.1
86	Apeiba echinata Gaertn.	Tiliaceae	14.8	-32.5
87	Bocageopsis multiflora	Annonaceae	22.3	-31.8
96	Peltogyne cf. heterophylla M.F. da Silva	Leg-Caesalpiniaceae	10.9	-31.6
98	Tourouli guianensis Aubl.	Quiinaceae	15.9	-31.6
104	Peltogyne cf. heterophylla M.F. da Silva	Leg-Caesalpiniaceae	28.1	-32.2
109	Naucleopsis imitans (Ducke) C.C. Berg	Moraceae	21.0	-33.2

Appendix 1 (contd.)

Tree	Species	Family	Height (m)	Leaf $\delta^{13}C(\rlap{hoo})$
110	Undetermined	Moraceae	15.5	-32.0
111	Minquartia guianensis Aubl.	Olacaceae		-33.5
113	Maquira calophylla (P. & E.) C.C. Berg	Moraceae	21.0	-31.2
116	Rauwola paraensis Ducke	Apocynaceae	17.8	-28.6
117	Brosimum guianensis (Aubl.) Huber	Moraceae	11.3	-33.8
120	Undetermined	Icacinaceae	14.7	-31.6
125	Naucleopsis imitans (Ducke) C.C. Berg	Moraceae	16.4	-32.6
129	Peltogyne prancei M.F. da Silva	Leg-Caesalpiniaceae	15.9	-31.3
131	Andira parviflora Ducke	Leg-Papilionaceae	12.7	-33.1
133	<i>Cecropia</i> sp.	Moraceae	23.3	-34.5
135	Coepia guianensis Aubl.	Chrysobalanaceae	22.5	-33.1
143	Amaioua corymbosa H.B.K.	Rubiaceae	6.0	-31.4
151	Eschweilera sp.	Lecythidaceae	17.5	-32.2
152	Micropholis sp.	Sapotaceae	8.8	-31./
15/	Sapotaceae sp.	Sapotaceae	21.0	-32.5
101	Eschweilera sp.	Lecythidaceae	11.0	-31.4
109	Drosimum mollis Crience densifiere en muse en Worm	Vachysiacooo	0.9	-31.0
170	Ditheeellobium equiforum (illd) Pth	L og Mimosacooo	22.3	-30.2
1/9	Malouotia tamaguirana	A pocynaceae	3.0 10.0	-33.6
182	Undetermined	Apocynaceae	19.0	-34.1
186	Lecythidaceae sp	Lecythidaceae	16.5	-31.6
189	Heisteria sp. ruceana Engl	Olacaceae	14.1	-31.9
190	Irvanthera sp.	Myristicaceae	9.0	-32.3
196	Licania micrantha Mig.	Myrtaceae	16.5	-33.7
200	Undetermined	Chrysobalanaceae	10.5	-32.8
202	Undetermined	Palmae	15.9	-35.9
206	Cordia ucavliensis Johnston	Boraginaceae	19.1	-30.0
214	Guarea pubescens	Meliaceae	7.5	-32.1
218	Protium opacum Swart	Burseraceae	24.0	-31.9
221	Amphirrox cf. latifolia Mart.	Violaceae	17.1	-31.7
222	Crepidosp. ermum cf. goudotiana (Tul.) Tr. & Pl.	Burseraceae	15.0	-33.7
233	Couratari sp.	Lecythidaceae	33.5	-30.2
235	Undetermined	Moraceae	28.5	-30.1
237	Cariniana decandra Ducke	Lecythidaceae	34.0	-29.8
240	Licania lata Macbrid	Chrysobalanaceae	4.5	-33.5
243	Leonia cf. crassa Smith.	Violaceae	23.5	-32.5
244	Pseudomedia laevis (R. & P.) Macor.	Moraceae	25.5	-31.0
250	Inga ci. capitata willa Tashiadia panindata Auhi	Leg-Mimosaceae	12.7	-32.9
254	Duararibaa murioata Custr	Rombacaceae	20.4	-31.9
255	Juararidea maricala Cuali.	Flacourtiaceae	12.1	-33.3
260	Undetermined	Lauraceae	18.3	-32.0
265	Paynarola cf. guianensis Aubl	Violaceae	15.5	-33.6
267	Manilkara longiciliata Ducke	Sapotaceae	13.5	-32.6
270	Rombaconsis cf. nervosa (Vitt.) A. Robyns	Bombacaceae	23.3	-28.0
271	Micropholis cf. venuloso (Mart. Eichl.) Pierre	Sapotaceae	11.7	-32.0
275	Calophyllum sp.	Guttiferae	12.0	-33.4
277	Protium cf. krukofii Swart	Burseraceae	22.3	-33.2
279	Clarisa racemosa R. et P.	Moraceae	26.2	-30.6
280	Sterculia excelsa Mart.	Sterculiaceae	12.2	-29.9
285	Tavomita sp.	Guttiferae	18.0	-31.0
286	Undetermined	Burseraceae	18.0	-32.3
294	Metrodorea flavida rause	Rutaceae	16.5	-33.2
299	Diosp. yros subrolata Hiern.	Ebenaceae	14.0	-31.5
300	Hevea cf. brasiliensis Muell. Arg.	Euphorbiaceae	18.8	-28.9
305	Tachigalia paniculata Aubl.	Leg-Caesalpiniaceae	24.0	-32.3
309	Cordia ucayliensis Johnston	Boraginaceae	12.0	-34.3
311	Undetermined	Hippocrateaceae	/.0	-33.3
312	Astronium fraxinifolium Schott	Anacardiaceae	9.0	-33.8
313	Dacryoides cl. scierophylla Cuatr.	Burseraceae	18.3	-32.8
314 315	I acmigana pameunana Aubl. Halioaostulis tomontosa (P $\in \mathbb{E}$) Dushy	Leg-Caesalpiniaceae	20.5	-29.9
315	Inga of alba Willd	Leg-Mimosaceae	52.0 14 1	-30.4
318	Castiloa uloi Warb	Moraceae	13.5	-28.3
321	Undetermined	Lauraceae	23.7	-32.1
322	Eschweilera sp	Lecythidaceae	17.7	-33.1
324	Socratea cf. exorrhiz a (Mart.) Barb. Rodr.	Palmae	7.0	-32.0
327	Undetermined	Nyctaginaceae	16.5	-34.8

176

Appendix 1 (contd.)

Tree	Species	Family	Height (m)	Leaf $\delta^{13}C(\%)$
328	Neea sp.	Nyctaginaceae	16.5	-31.2
331	Pseudomedia laevis (R. & P.) Macbr.	Moraceae	16.9	-34.2
333	Undetermined	Lecythidaceae	9.2	-31.9
334	Undetermined	Leg-undetermined	15.0	-32.5
337	<i>Guatteria</i> sp.	Annonaceae	12.0	-31.8
338	Trattinickia sp.	Burseraceae	25.5	-31.7
339	Protium cl. robustum (Swart) Porter	Burseraceae	11.9	-32.9
342 343	Amphirrox Cl. Idiljolid Mart.	Moraceae	8.0 15.0	-32.0
343	Heliocostylis tomentosa (P & F) Rushy	Moraceae	28.4	-28.8
345	Pseudomedia laevis (R & P) Machr.	Moraceae	12.0	-31.1
346	Eschweilera coriacea (A.P.DC.) Mart. ex erg.	Lecythidaceae	15.5	-30.5
347	Anacardium giganteum Hanc. ex Engl.	Anacardiaceae	10.0	-32.5
348	Euterpe precatoria Mart.	Palmae		-29.5
349	Eschweilera chartacea Berg.	Lecythidaceae	10.0	-29.9
350	Naucleopsis glabra sp. ruce	Moraceae	11.0	-30.7
352	Undetermined	Lauraceae	18.0	-32.7
355	Pseudomedia laevis (R. & P.) Macbr.	Moraceae	33.0	-30.5
300	Leonia ci. crassa Smith. Maguing calorbulla ($\mathbf{p} \in \mathbf{F}$) C C Porg	Violaceae	20.8	-32.3
350	Licania macronhylla Bth	Chrysobalanaceae	12.7	-32.0
362	Crepidosp ermum cf goudotiana (Tul) Tr & Pl	Burseraceae	11.0	-32.1
363	Grisma hicolor Ducke	Vochysiaceae	14.0	-29.6
365	Undetermined	Burseraceae	15.1	-31.0
366	Naucleospsis sp.	Moraceae	21.1	-30.4
368	Xylopia nitida Dun.	Annonaceae	17.9	-32.5
374	Tachigalia paniculata Aubl.	Leg-Caesalpiniaceae	18.8	-29.6
375	Asp. idosp. erma sp.	Apocynaceae	11.0	-31.3
376	Clarisa racemosa R. et P.	Moraceae	14.0	-32.7
377	Leonia cf. crassa Smith.	Violaceae	14.1	-33.6
3/8	Maquira guianensis Aubi.	Moraceae	25.5	-30.9
379	Undetermined	Hippogratageage	24.0	-30.5
385	Guaraa mubascans	Meliaceae	21.0	-34.1
386	Undetermined	Lauraceae	18.8	-33.0
387	Undetermined	Sapotaceae	16.9	-34.9
388	Tachigalia paniculata Aubl.	Leg-Caesalpiniaceae		-32.0
390	Undetermined	Burseraceae	16.5	-32.4
391	Sizigiopsis sp.	Sapotaceae	41.3	-31.1
392	Minquartia guianensis Aubl.	Olacaceae	13.5	-31.0
393	Tachigalia sp.	Leg-Caesalpiniaceae	25.0	-31.7
394	Tachigalia sp.	Leg-Caesalpiniaceae	42.4	-30.7
393	Neeu sp. Psoudomodia laguis (P. & P.) Machr	Moraçana	11.0	-34.8
399	Compsoneura ulei Warb	Myristicaceae	11.9	-32.7
400	Eschweilera coriacea (A.P. DC.) Mart. ex erg.	Lecythidaceae	30.5	-34.3
401	Undetermined	Myrtaceae	15.3	-33.9
403	Sloanea cf. rufa Planch. ex Benth.	Euphorbiaceae	6.0	-34.3
404	Neea cf. altissima R. & E.	Nyctaginaceae	26.2	-31.8
406	Protium sp.	Burseraceae	30.9	-31.5
407	Rheedia sp.	Guttiferae	15.0	-33.5
408	Symphonia globulifera L.	Guttiferae	12.0	-32.9
410	Protium cf. paniculatum Engl. var paniculatum	Burseraceae	34.4	-31.4
411	Pithecellobium racemosa Ducke	Leg-Mimosaceae	12.8	-31.0
414	Terragasiris ci. anissima (Audi.) Swart	Leg Cassalpiniaceae	22.5	-32.2
415	Fischweilera sp.	Leg-Caesaipinaceae	25.1	-32.1
418	Protium cf. neglectum Swart var. robustum Swart	Burseraceae	13.2	-31.0
419	Tachigalia sp.	Leg-Caesalpiniaceae	5.0	-32.8
420	Virola pavonis (A.D.C.) A.C. Smith	Myristicaceae	16.5	-33.5
421	Guatteria cf. poeppigiana Mart.	Annonaceae	22.3	-31.6
423	Naucleopsis sp.	Moraceae	18.9	-30.1
424	Protium cf. robustum (Swart) Porter	Burseraceae	17.1	-30.6
425	Undetermined	Leg-undetermined	26.5	-31.8
426	Undetermined	Leg-undetermined	26.5	-31.9
427	Astronomic manual Mart	Burseraceae	12.0	-51.2
420 429	Asu ocaryum murumuru Mart. Protium of aracouchini (Aubl.) March	Failliae Burseraceae	4.0	-33.1
432	Tachigalia sp	Leg-Caesalniniaceae	23.1	-32.9
	- actinguita op.	Leg Caesarpinaceae		J

Appendix 1 (contd.)

Tree	Species	Family	Height (m)	Leaf $\delta^{13}C(\rlap{hoo})$
433	Sclerolobium cf. crysophyllum P. & E.	Burseraceae	15.0	-32.2
434	Maquira sclerophylla (Ducke) Berg	Moraceae	14.0	-30.7
436	Protium cf. paniculatum Engl. var paniculatum	Burseraceae	17.6	-30.5
437	Protium sp.	Burseraceae	17.6	-31.5
438	Virola pavonis (A.D.C.) A.C. Smith	Myristicaceae	34.5	-32.8
439	Undetermined	Lauraceae	10.0	-33.8
441	Tachigalia sp.	Leg-Caesalpiniaceae	34.5	-31.0
442	Eschweilera sp.	Lecythidaceae	21.3	-31.3
443	Protium opacum Swart	Burseraceae	17.1	-32.9
444	Protium cf. robustum (Swart) Porter	Burseraceae	17.1	-33.4
446	Metrodorea flavida rause	Rutaceae	8.0	-32.6
447	Metrodorea flavida rause	Rutaceae	16.5	-32.0
450	Neea sp.	Nyctaginaceae	7.0	-31.4
451	Protium cf. robustum (Swart) Porter	Burseraceae	10.0	-31.7
454	Cordia sp. rucei Meaz.	Boraginaceae	8.0	-33.4
458	Metrodorea flavida rause	Rutaceae	8.0	-32.5
459	Pseudomedia laevis (R. & P.) Macbr.	Moraceae	8.0	-32.7
461	Guatteria cf. poeppigiana Mart.	Annonaceae	34.5	-32.6
462	Ocotea sp.	Lauraceae	40.7	-31.9
463	Protium cf. robustum (Swart) Porter	Burseraceae	13.7	-29.6
464	Pithecellobium jupunba (Willd) Urb.	Leg-Mimosaceae	24.6	-30.2
465	Maquira sclerophylla (Ducke) Berg	Moraceae	25.0	-30.8
466	Neea sp.	Nyctaginaceae	13.5	-34.7
467	Undetermined	Nonimiaceae	9.0	-34.1
471	Licaria sp.	Lauraceae	17.2	-34.1
473	Minquartia guianensis Aubl.	Olacaceae	25.1	-31.7
474	Theobroma subincanum Mart.	Sterculiaceae	18.0	-32.2
475	Undetermined	Moraceae	18.0	-31.8
476	Undetermined	Burseraceae	11.0	-33.8
477	Bocageopsis sp.	Annonaceae	9.0	-34.1
481	<i>Tachigalia</i> sp.	Leg-Caesalpiniaceae	18.0	-32.0

Appendix 2 Tree height (m) and $\delta^{13}C$ values (%) of wood samples from boles for species collected at Samuel Ecological Reserve, Rondônia

Tree	Species	Height (m)	Wood $\delta^{13}C(\%)$	
1	Parkia cf. nitida Miq.	12.00	-29.1	
2	Undetermined	17.50	-29.1	
3	Pouteria sp.	17.50	-29.9	
7	Duroia macrophylla Huber	9.00	-29.7	
10	Richardella sp.	21.00	-29.9	
11	Maquira guianensis Aubl.	12.50	-29.3	
13	Parkia cf. nitida Miq.	24.00	-29.4	
14	Oxandra xylopoides Diels	22.70	-30.3	
15	Licania latifolia Bth.	13.50	-28.0	
16	Euterpe precatoria Mart.	14.00	-31.2	
17	Brosimum guianensis (Aubl.) Huber	16.50	-29.9	
18	Pithecellobium racemosa Ducke	16.50	-28.3	
19	Naucleopsis imitans (Ducke) C.C. Berg	16.50	-28.2	
51	Pseudomedia laevis (R. & P.) Machbr.	23.60	-27.3	
68	Tymatococcus amazonicus P. & E.	22.40	-26.5	
82	Bocageopsis multiflora (Mart.) R.E. Fries	24.80	-25.5	
109	Naucleopsis imitans (Ducke) C.C. Berg	21.00	-27.8	
116	Rauwolia paraensis Ducke	17.80	-25.6	
151	Eschweilera sp.	17.50	-29.0	
193	Eschweilera chartacea Berg.	22.90	-28.9	
202	Undetermined	15.90	-27.8	
203	Undetermined	10.50	-31.0	
204	Undetermined	18.75	-34.2	
211	Minquartia guianensis Aubl.	14.30	-28.9	
212	Protium sp.	29.00	-26.7	
216	Swartzia cf. ingiaefolia Ducke	32.00	-26.0	
218	Protium opacum Swart	24.00	-29.6	
226	Undetermined	27.90	-29.0	

Appendix 2 (contd.)

Tree	Species	Height (m)	Wood $\delta^{13}C(\%)$
228	Apeiba echinata Gaertn.	26.00	-31.5
233	<i>Couratari</i> sp.	33.50	-26.1
238	Martiodendrum sp.	39.60	-26.1
241	Bagassa guianensis Aubl.	31.50	-27.5
258	Protium cf. robustum (Swart) Porter	28.80	-25.8
268	Protium cf. tenvifolium (Engler) Engler	14.10	-27.0
270	Bombacopsis cf. nervosa (Vitt.) A. Robyns	23.30	-28.9
282	Undetermined	52.80	-26.4
286	Undetermined	18.00	-25.5
301	Undetermined	23.99	-30.6
303	Pseudomedia laevis (R. & P.) Macbr.	22.00	-27.4
310	Anacardium giganteum Hanc. ex Engl.	22.26	-26.8
315	Heliocostylis tomentosa (P. & E.) Rusby	32.60	-28.0
319	Undetermined	21.27	-30.0
354	Brosimum guianensis (Aubl.) Huber	43.50	-29.8
365	Undetermined	15.10	-27.8
372	Swartzia cf. ingiaefolia Ducke	18.80	-31.6
382	Bertholletia excelsa Humb. Bonpl.	46.58	-26.6
391	Sizigiopsis sp.	41.30	-26.3
400	Eschweilera coriacea (A.P.DC.) Mart. ex erg.	30.50	-29.6
409	Undetermined	49.50	-25.4
416	Eschweilera sp.	25.10	-28.9
421	Guatteria cf. Poeppigiana Mart.	22.30	-29.5
430	Undetermined	19.50	-25.7
438	Virola pavonis (A.D.C.) A.C. Smith	34.50	-29.5
445	Apuleia molaris Bth.	46.26	-27.7
461	Guatteria cf. poeppigiana Mart.	34.50	-28.4
475	Undetermined	18.00	-28.3
478	Pseudomedia laevis (R. & P.) Macbr.	28.67	-28.0

References

- Bassow SL, Bazzaz FA (1997) Intra- and inter-specific variation in canopy photosynthesis in a mixed deciduous forest. Oecologia 109:507–515
- Berry SC, Varney GT, Flanagan LB (1997) Leaf δ^{13} C in *Pinus* resinosa trees and understory plants: variation associated with light and CO₂ gradients. Oecologia 109:499–506
- Broadmeadow MSJ, Griffiths H (1993) Carbon isotope discrimination and the coupling of CO₂ fluxes within forest canopies. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water Relations. Academic Press, San Diego, Calif., pp 109–130
- Brown IF, Martinelli LA, Thomas WW, Moreira MZ, Cid Ferreira CA, Victoria RL (1995) Uncertainty in the biomass of Amazonian forests: an example from Rondônia, Brazil. For Ecol Manage 75:175–189
- Buchmann N, Kao WY, Ehleringer JR (1996) Carbon dioxide concentrations within forest canopies – variation with time, stand, and vegetation type. Global Change Biol 2:421–432
- Buchmann N, Guehl JM, Barigah TS, Ehleringer JR (1997a) Interseasonal comparison of CO₂ concentrations, isotopic composition, and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110:120–131
- Buchmann N, Kao WY, Ehleringer JT (1997b) Influence of stand structure on carbon-13 of vegetation, solids, and canopy air within deciduous and evergreen forests in Utah, United States. Oecologia 110:109–119
- Departamento Nacional de Produção Mineral, Brazil (1978) Projeto RADAMBRASIL. Folha SC.20 Porto Velho. DNPM, Rio de Janeiro, Brazil
- Ducatti C, Salati E, Martins D (1991) Measurement of the natural variation of ¹³C:¹²C ratio in leaves at Rserve Ducke Forest, central Amazonia. For Ecol Manage 38:201–210

- Ehleringer JR, Field CB, Lin Z, Kuo C (1986) Leaf carbon isotope and mineral composition in sub-tropical plants along an irradiance cline. Oecologia 70:520–526
- Ehleringer JR, Lin ZF, Field CB, Sun GC, Kuo CY (1987) Leaf carbon ratios of plants from a subtropical monsoon forest. Oecologia 72:109–114
- Farquhar GD, O'Leary OL, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137
- Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537
- Fisher JC von, Tieszen LL (1995) Carbon isotope characterization of vegetation and soil organic matter in subtropical forests in Luquillo, Puerto Rico. Biotropica 27:138–148
- Flanagan LB, Brooks JR, Varney GT, Berry SC, Ehleringer JR (1996) Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO₂ in boreal forest ecosystem. Global Biogeochem Cycles 10:629–640
- Francey RJ, Gifford RM, Sharkey TD, Weir B (1985) Physiological influences on carbon isotope discrimination in huon pine (*Lagarostrobus franklinii*). Oecologia 66:469–481
- Gebauer G, Schulze E-D (1991) Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining *Picea abies* forest in the Fichtelgebirge, NE Bavaria. Oecologia 97:198–207
- Grace J, Lloyd J, McIntyere J, Miranda A, Meir P, Miranda H, Moncriedd J, Massheder J, Wright I, Gash J (1995) Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in south-west Amazonia, Global change Biol 1:1–12
- Hanba YT, Shigeta M, Lei TT, Koike T, Wada E (1997) Variations in leaf δ^{13} C along a vertical profile of irradiance in a temperate Japanese forest. Oecologia 110:253–361
- Holdridge LR, Grenke WC, Hatheway WH, Liang T, Tosi JA Jr (1971) Forest environments in tropical life zones: a piloty study. Pergamon, New York

- Hubick KT, Farquhar GD, Shorter R (1986) Correlation between water-use efficiency and carbon isotope discrimination in diverse peanut (*Arachis*) germplasm. Aust J Plant Physiol 13:803–816
- Hubick KT, Shorter R, Farquhar GD (1988) Heritability and genotype × environment interactions of carbon isotope discrimination and transpiration efficiency in peanut (*Arachis hypogae* L.). Aust J Plant Physiol 15:799–813
- Kapos V, Ganade G, Matsui E, Victoria RL (1993) δ^{13} C as an indicator of edge effects in tropical rainforest reserves. J Ecol 81:425–432
- Kruijt B, Lloyd J, Grace J, McIntyer JA, Farquhar GD, Miranda AC, McCracken P (1996) Sources and sinks of CO₂ in Rondona tropical rainforest. In: Gash JHC, Nobre CA, Roberts JM, Victoria RL (eds) Amazonian deforestation and climate. Wiley, Chichester, pp 331–351
- Leavitt SW, Long A (1986) Stable-carbon isotope variability in tree foliage and wood. Ecology 67:1002–1010
- Lieberman M, Lieberman D, Peralta R (1989) Forests are not just Swiss cheese: canopy stereogeometry of non gaps in tropical forests. Ecology 70:550–552
- Lloyd J, Kruijt B, Hollinger DY, Grace J, Francey RJ, Wond SC, Kelliher FM, Miranda AC, Farquhar GD, Gash JHC, Vygodskaya NN, Wright IR, Miranda HS, Schulze E-D (1996) Vegetation effects on the isotopic composition of atmospheric CO₂ at local and regional scales: theoretical aspects and a comparison between rain forest in Amazonia and a boreal forest in Siberia. Aust J Plant Physiol 23:371–399
- Martinelli LA, Victoria RL, Forsberg BR, Richey JE (1994) Isotopic composition of major carbon reservoirs in the Amazon floodplain. Int J Ecol Environ Sci 20:31–46

- Medina E, Minchin P (1980) Stratification of δ^{13} C values of leaves in Amazonian rain forests. Oecologia 45:377–378
- Medina E, Montes G, Ceuvas E, Rokzandic Z (1986) Profiles of CO_2 concentration and $\delta^{13}C$ values in tropical rain forests of the upper Rio Negro Basin, Venezuela. J Trop Ecol 2:207–217
- Medina E, Sternberg L, Cuevas E (1991) Vertical stratification of δ^{13} C values in closed natural and plantation forests in the Luquillo mountains, Puerto Rico. Oecologia 87:369–372
- Merwe NJ van der, Medina E (1989) Photosynthesis and ¹³C/¹²C ratios in Amazonian rain forests. Geochim Cosmochim Acta 53:1091–1194
- Pearcy RW, Pfitsch WA (1991) Influence of sunflecks on the δ^{13} C of *Adenocaulon bicolor* plants occurring in contrasting forest understory microsites. Oecologia 86:457–462
- Schleser GH (1992) δ^{13} C pattern in a forest tree as an indicator of carbon transfer in trees. Ecology 73:1922–1925 Schleser GH, Jayasekera R (1985) δ^{13} C variation of leaves in for-
- Schleser GH, Jayasekera R (1985) δ^{13} C variation of leaves in forests as an indicator of reassimilated CO₂ from soil. Oecologia 458:26–32
- Sternberg LSL (1997) Interpretation of recycling indexes. Aust J Plant Physiol 24:395–398
- Sternberg LSL, Mulkey SS, Wright SJ (1989) Ecological interpretation of leaf carbon isotope ratios: influence of respired carbon dioxide. Ecology 70:1317–1324
- Victoria RL, Fernandes F, Martinelli LA, Piccolo MC, Camargo PB, Trumbore S (1995) Past vegetation changes in the Brazilian Pantanal arboreal-grassy savanna ecotone by using carbon isotopes in the soil organic matter. Global Change Biol 1:165–171
- Walcroft AS, Silvester WB, Grace JC, Carson SD, Waring RH (1996) Effects of branch length on carbon isotope discrimination in *P. radiata*. Tree physiol 16:281–286