Physiological and Isotopic Aspects of Photosynthesis in *Peperomia*¹

Received for publication September 27, 1984 and in revised form January 22, 1985

IRWIN P. TING*, LORETTA BATES, LEONEL O'REILLY STERNBERG, AND MICHAEL J. DENIRO Department of Botany and Plant Sciences, University of California, Riverside, California 92521 (I.P.T., L.B.); and Department of Earth and Space Sciences (L.O.S., M.J.D.) and Archaeology Program (M.J.D.), University of California, Los Angeles, California 90024

ABSTRACT

Physiological and isotopic aspects of several *Peperomia* species were investigated. All but one species had C₃-like stomatal behavior, in that stomata were open during the day and closed during the night. In these species, most atmospheric CO₂ uptake occurred during the day. Concurrent with this stomatal behavior, there were Crassulacean acid metabolism-like acid fluctuations in most species. Carbon and hydrogen isotope ratios of cellulose nitrate from *Peperomia* reflect their physiological behavior. The δ^{13} C values of cellulose nitrate from *Peperomia* species were similar to values observed in C₃ plants and consistent with the daytime uptake of exogeneous CO₂ via the C₃ photosynthetic pathway. The δ D values of cellulose nitrate from *Peperomia* species approach those of Crassulacean acid metabolism plants. These elevated δ D values are caused by fractionations occurring during biochemical reactions and not as a consequence of water relations.

The phenomenon of CAM is now fairly well understood (12, 26). In typical CAM, gas exchange occurs predominantly at night when stomata are open. Carbon dioxide is taken up at night by carboxylation of PEP², catalyzed by the enzyme PEP carboxylase, to form the first product, oxalacetate. Oxalacetate is rapidly reduced to malic acid, which accumulates in vacuoles. During the subsequent light period, malic acid is decarboxylated, and the CO₂ released into the tissue is assimilated through the C₃ photosynthetic cycle. Because stomata are closed, internal CO₂ concentration may increase to over 1% during the day (4). The ecological interpretation of CAM is that it represents a mechanism by which water is conserved, since most gas exchange takes place at night when evaporative demand is low (26).

A modification which has been known for approximately one decade, termed 'CAM-idling,' occurs when CAM plants are severely water-stressed and stomata close both day and night. In CAM-idling, there is a continual, but low-rate, cycling of organic acids through the CAM pathway (15, 17, 23, 27). Evidently, the low level of metabolism keeps the plant's biochemical activity poised until water is available (13, 15–17). Once water is available, the plants recover, usually within 24 h.

Recently, a modification of CAM, termed CAM-cycling, has been described (27). In CAM-cycling, gas exchange occurs largely during the daylight hours, typical of C_3 plants, yet there is diurnal cycling of organic acids in the manner of CAM. CAM-cycling has been observed in *Pereskia* spp. (14), *Cissus quadrangularis* (28), *Welwitschia* (25), *Talinum* (9), the Bromeliaceae (10), and in some species of the Crassulaceae (24).

It is now well known that carbon isotope ratios $({}^{13}C/{}^{12}C)$ can distinguish C₃ plants from C₄ and CAM plants operating in the CAM mode (1). C₃ plants have ${}^{13}C/{}^{12}C$ ratios lower than C₄ and CAM plants. It has also been shown that hydrogen isotope ratios (D/H ratios) of cellulose nitrate from CAM plants are much higher than those from C₃ and C₄ plants (19–21). Further, it has been shown that greenhouse-grown CAM-cycling plants have δD values approaching those of CAM plants, although their $\delta^{13}C$ values are typical of C₃ plants (21).

The purpose of this study was to investigate physiological and isotopic aspects of CAM-cycling as they exist in the genus *Peperomia*. There are at least 300 species of *Peperomia* native to tropical and subtropical regions (7). They are found in South America, in the islands of the Caribbean, southeastern United States, and islands of the Pacific including Hawaii. Most species are epiphytic and/or lithophytic. The leaf anatomy of these plants is very distinctive, showing an upper hypodermis (multiple epidermis) that may act as a water storage tissue, a median deep green palisade tissue of perhaps three cell layers, and a lower, lighter green, spongy palisade of many cell layers that has the physical appearance of CAM tissue (7).

MATERIALS AND METHODS

Plant Material. Isotopic analyses were performed on plants collected at La Selva, Costa Rica. Physiological measurements were conducted on living plants grown in a greenhouse in Riverside, CA. Plants collected at La Selva were propagated from cuttings and grown in the greenhouse. Plants purchased at nurseries or obtained from the University of California Botanic Garden at Berkeley were also grown in the greenhouse. The greenhouse had a mean annual high temperature of 28°C and a mean low of 22°C. Humidity was variable, but in the neighborhood of 40 to 50%. Plants were grown in full glasshouse sun or under shade, depending upon the species. Plants were watered frequently to avoid stress.

Gas Exchange Studies. Gas exchange parameters were determined with a dual-isotope porometer (6) on plants from the greenhouse. The porometer passes an air stream of dry ${}^{14}CO_2$ (200 μ l L⁻¹ in N₂:O₂ mixture of 80:20) through THO of known specific radioactivity. Abaxial leaf surfaces were exposed in triplicate to the radioactive gases for 20 s via a small chamber clamped onto the leaves. The resistances to water vapor transfer and CO₂ uptake (cm s⁻¹) were derived from THO vapor uptake and ${}^{14}CO_2$ uptake data that were determined by liquid scintillation counting. Values for conductances (cm s⁻¹), transpiration

¹ Supported in part by National Science Foundation Grants PCM82-00366 and ATM79-24591.

² Abbreviations: PEP, phosphoenolypyruvate; THO, tritiated water; FW, fresh weight.

FIG. 1. Gas exchange data for *P. scandens*, a CAM-like species, and for *P. obtusifolia*, a more C₃-like species, both of which were purchased at a Riverside nursery and grown in the greenhouse. CO₂ uptake = mg CO₂ dm⁻² h⁻¹; titratable acidity = μ eq g⁻¹ FW; stomatal conductance = cm s⁻¹. Datum points are means of three replicates.

FIG. 2. Gas exchange data for four species of *Peperomia* collected at La Selva and propagated in the greenhouse. See Figure 1 legend for nomenclature and details.

 Table I. Carbon and Hydrogen Isotopic Compositions from Selected

 Peperomia spp.

L ocality#	s13C	٨D
Locality	U C	
	‰	
CR	-29.4	+31
CR	-33.8	+13
CR	-31.6	+18
CR	-28.5	-5
CR	-27.6	-9
CR	-30.5	+5
CR	-24.7	+9
CR	-29.2	-0
CR	-31.0	-2
CR	-28.4	-19
UCR	-29.5 ^d	-1 ^d
UCR	-25.5 ^d	-12 ^d
UCR	-24.9 ^d	-14 ^d
UCR	-27.7 ^d	+23 ^d
UCR	-22.3 ^d	+14 ^d
	CR CR CR CR CR CR CR CR CR CR CR CR CR C	$ \begin{array}{c} Locality^{a} \qquad \delta^{13}C \\ \hline & & & \\$

^aCR, Costa Rica; UCR, University of California at Riverside. ^bThere are two different morphological forms of *P. alata* and *P. rotundifolia*; form *a* for both species is the form used in physiological experiments reported here. ^cThis species of *Peperomia* could not be identified. ^dPreviously reported (21). rates (g water loss $dm^{-2} h^{-1}$), and CO₂ uptake rates (mg CO₂ $dm^{-2} h^{-1}$) were also calculated from the gas exchange data.

Acid Titrations. Leaf samples from greenhouse plants were collected, frozen with dry ice, and stored in a freezer until assayed. Individual samples were weighed, ground in glass-distilled H₂O with a motorized Teflon tissue homogenizer, and titrated to a pH 7.0 endpoint with 0.01 N KOH. Data are expressed as μ eq acid g⁻¹ FW or as μ eq acid cm⁻².

Isotope Analyses. Samples of plant material for isotopic analyses were dried in an oven at 50°C, further desiccated in a freeze dryer, and ground to a fine powder in a Wiley mill. cellulose was extracted as previously described (11). Cellulose oxygen isotope ratios were determined by the method of Rittenberg and Ponticorvo (18) as modified by Burk (3). Carbon and hydrogen isotope ratios of cellulose nitrate prepared from cellulose (11) were determined by a modified version of the Stump and Frazer method (11, 22). Isotope ratios are expressed as δ values, where

$$\delta = \left(\frac{R \text{ sample}}{R \text{ standard}} - 1\right) \times 1000\%$$

and *R* represents ¹⁸O/¹⁶O for δ^{18} O values, D/H for δ D values, and ¹³C/¹²C for δ^{13} C values. The standards are standard mean ocean water for δ^{18} O and δ D values and the belemnite from the Peedee formation of South Carolina carbonate for δ^{13} C values. The precision of the isotope analyses of cellulose and cellulose nitrate were ±2°/00 for δ D values, ±0.05°/00 for δ^{18} O values, and ± 0.2°/00 for δ^{13} C values.

RESULTS AND DISCUSSION

Peperomia scandens is one of the most CAM-like Peperomia species that we have tested (Fig. 1). There is a marked diurnal fluctuation of organic acids identical to that of CAM plants. CO_2 fixation shows a definite early morning burst comparable to CAM plants (12), a depression during the day, followed by an increase toward the end of the light period. There is substantial CO_2 fixation at night in comparison to the light period. Also shown in Figure 1 are data for *Peperomia obtusifolia*, one of the least CAM-like of the *Peperomia* species that we have studied. For this species, there is little evidence of dark CO_2 fixation or dark stomatal conductance, even though organic acids tended to be high. We have, however, observed diurnal acid fluctuation for this species previously (6).

Figure 2 shows gas exchange properties for four species of Peperomia collected at La Selva and grown in the greenhouse at Riverside. For the most part, CO₂ uptake is typical of C₃ plants, occurring largely during the day. However, in all cases, there appears to be some exogenous CO₂ fixation at night, although rates are rather low. Observations of stomatal conductance expressed in cm s⁻¹ are consistent with CO₂ uptake patterns. Care must be taken in interpretation of the CO_2 fixation data presented here because they were obtained with ${}^{14}CO_2$ and, thus, net CO_2 fixation was not measured. It is highly likely and indeed probable that the small amount of CO₂ fixation at night, sometimes reaching about 1 mg dm⁻² h⁻¹, is less than the amount of CO₂ lost through respiration. Nevertheless, there appears to be substantial dark CO₂ fixation, since there is a definite, but small, diurnal fluctuation of organic acids similar to that observed in CAM plants, with levels of organic acids reaching values as high as 50 μ eq g⁻¹ FW.

We do not have sufficient data to calculate the contribution to acid synthesis by dark CO₂ fixation. However, for *Peperomia* sp. nov., there was no apparent CO₂ uptake at night, yet an organic acid fluctuation of about 15 μ eq g⁻¹ FW was measured. Thus, in this species, dark CO₂ fixation seems insufficient to acocunt for acid synthesis.

In summary, the gas exchange and acid flux data (Figs. 1 and

Table II.	Carbon and Hydrogen	Isotopic Compositions	of Cz. Ca.	CAM. and Peperomia spp.
			, ., .,	

Plant Type	Greenhouse*		La Selva, Costa Rica		
	δ ¹³ C	δD	δ ¹³ C	δD	
	‱				
C3	$-28.2 \pm 1.3^{b} (10)^{c}$	-80 ± 35	-28.3 ± 1.7 (7)	-45 ± 11	
C4	-12.6 (2)	-25	-11.3 (2)	-41	
CAM	-15.4 ± 3.2 (21)	$+30 \pm 19$	-16.2 ± 2.3 (6)	$+27 \pm 13$	
Peperomia	$-26.0 \pm 2.7(5)$	$+2 \pm 16$	-29.5 ± 2.5 (10)	$+4 \pm 14$	

^a Previously reported (21). ^b Data are given as means ± 1 sp. ^c Numbers in parentheses indicate number of species analyzed.

FIG. 3. a, δD values versus $\delta^{13}C$ values of cellulose nitrate from plants collected at La Selva, Costa Rica. The symbols indicate C₃ plants (**●**), C₄ plants (**■**), CAM plants (Δ), *Peperomia* species (O), and species from the family Gesneriaceae (**O**). Datum points which are underlined with a dashed line are values measured from nonepiphytic terrestrial plants. All other plants sampled were epiphytes. b, δD values of cellulose nitrate versus $\delta^{18}O$ values of cellulose for the same plants shown in Figure 3a. SMOW, standard mean ocean water; PDB, belemnite from the Peedee formation of South Carolina.

2) indicate that *Peperomia* spp. may have CAM (*P. scandens*) or CAM-cycling (all species in Fig. 2), but that some species may show little evidence of these photosynthetic modes (*P. obtusi-folia*).

Carbon and hydrogen isotope ratios for cellulose nitrate from five species of *Peperomia* bought at a local nursery and maintained in the greenhouse and nine species of *Peperomia* collected at La Selva, Costa Rica, are given in Table I. Inspection of the data shown in Table II indicates that δ^{13} C values of *Peperomia* are comparable to those observed for C₃ plants and dissimilar to values of C₄ and CAM plants. Cellulose nitrate from *Peperomia* species is enriched in deuterium relative to that in C₃ and C₄ plants for both greenhouse and Costa Rican samples, approaching values seen in CAM plants in both cases (Table II).

As shown in Figure 3, a plot of δD values versus $\delta^{13}C$ values of samples collected in La Selva allows separation of the *Peperomia* showing CAM-cycling from C₃, C₄, and CAM plants. Thus, our previous observations that plants showing CAM-cycling can be identified based on their hydrogen and carbon isotopic compositions are confirmed (21). In addition to *Peperomia*, Figure 3 displays data for two epiphytes in the Gesneriaceae family (*Codananthe crassifolia* and *Columnea linearis*), which were also collected at La Selva, Costa Rica. These two plants have the same leaf morphology as *Peperomia* species. Indeed *Codananthe*, with the more positive δD value of the two, shows the same carbon metabolism properties as the *Peperomia* species showing CAM-cycling, whereas *Columnea*, with the more negative δD value, has carbon metabolism properties more similar to a typical C_3 plant (unpublished observations). Thus, δD values of cellulose nitrate from these two plants reflect the two different types of photosynthetic metabolisms.

The similarity of the δ^{13} C values of the *Peperomia* species and the C₃ plants, sampled either in the greenhouse or at La Selva (Table II), indicates that exogenous carbon fixation in *Peperomia* is through the C₃ pathway. In those *Peperomia* species showing CAM-cycling, we assume that all CO₂ fixed by the CAM pathway at night (when stomata are closed) is the result of refixation of respiratory CO₂. This respiratory CO₂, coming from carbohydrates synthesized by C₃ photosynthesis, would have δ^{13} C values which reflect C₃ photosynthesis. Thus, these plants have δ^{13} C values similar to those of C₃ plants, and not of CAM plants.

The deuterium enrichment we observed in CAM-cycling Peperomia spp. could be caused by isotopic fractionations occurring during H₂O metabolism. Briefly, the enrichment would occur if the leaf water in these plants becomes enriched in deuterium during evapotranspiration and if this H₂O then labels the organically bound hydrogen. If this hypothesis is true, cellulose from CAM-cycling plants should also be enriched in ¹⁸O relative to C₃ and C₄ plants, since evapotranspiration enriches leaf water in both D and ¹⁸O (2, 5). Measurement of oxygen isotope ratios for the field-grown Costa Rican sample set shows no such oxygen enrichment in CAM-cycling plants (Fig. 3b). In fact, in plants with the various photosynthetic modes, all have similar oxygen isotope ratios. Thus, we conclude that elevated δD values of cellulose nitrate from CAM-cycling plants, like those in CAM plants (19, 20), are due to fractionations occurring during biochemical reactions, perhaps those associated with acid fluctuation.

The contribution of the CAM-cycling phenomenon to the physiology and/or ecology of a plant is not apparent at this time. Peperomia species in their natural environment, being mostly epiphytic, are subjected to frequent periods of drought. Root systems are underdeveloped and thus the plants tend to be hydrated only during and immediately after precipitation. Plants, particularly those species that grow in partial or full sun, become water stressed soon after a precipitation event. We suspect that the CAM-cycling phenomenon is similar to the CAM-idling phenomenon, in which there is organic acid recycling during severe drought when stomata are closed day and night (15, 16). We suggest that drought occurring between precipitation episodes is accompanied by stomatal closure in CAM-cycling plants. If organic acid cyclic continues, the plants would be in the CAMidling phase and, thus, metabolically poised to resume full photosynthetic activity when water is available. Further investigations are being conducted to ascertain these aspects of CAMcycling.

Acknowledgments—We thank Henry Ajie, Janet Hann, and David Winter for technical assistance; Barry Hammel, Duke University, for assistance in identifying *Peperomia* species; and the Organization for Tropical Studies, Inc., at La Selva, Costa Rica, for their assistance.

LITERATURE CITED

- BENDER MM 1971 Variation in ¹³C/¹²C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10: 1239-1244
- BRICOUT J 1973 Fruit and fruit products—control of authenticity of fruit juices by isotopic analysis. J Assoc Anal Chem 56: 739-742
 BURK RL 1980 Factors effecting ¹⁸O ratios in cellulose. Ph.D. dissertation.
- BURK RL 1980 Factors effecting ¹⁸O ratios in cellulose. Ph.D. dissertation. University of Washington, Seattle
- COCKBURN W, IP TING, LO STERNBERG 1979 Relationships between stomatal behavior and internal carbon dioxide concentration in Crassulacean acid metabolism plants. Plant Physiol 63: 1029-1032
- EPSTEIN S, P THOMPSON, CJ YAPP 1977 Oxygen and hydrogen isotopic ratios in plant cellulose. Science 198: 1206–1209
- HANSCOM Z, IP TING 1978 Response of succulents to plant water stress. Plant Physiol 61: 327-330
- KAUL RA 1977 The roles of the multiple epidermis in foliar succulence of Peperomia (Piperaceae). Bot Gaz 138: 213-218
- MARTIN CE, AE LUBBERS, JA TEERI 1982 Variability in Crassulacean acid metabolism: a survey of North Carolina succulent species. Bot Gaz 143: 491-497
- MARTIN CE, AK ZEE 1983 C₃ photosynthesis and Crassulacean acid metabolism in a Kansas rock outcrop succulent. *Talinum calycinum* Engeln. (Portulacaceae). Plant Physiol 73: 718-723
- 10. MEDINA E 1974 Dark CO₂ fixation, habitat preference and evolution within the Bromeliaceae. Evolution 28: 677–686
- NORTHFELT D, MJ DENIRO, S EPSTEIN 1981 Hydrogen and carbon isotopic ratios of cellulose nitrate and saponifiable lipid fractions prepared from annual growth rings of California redwood. Geochim Cosmochim Acta 45: 1895-1989
- OSMOND CB 1978 Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29: 379–414
- OSMOND CB 1982 Carbon cycling and stability of the photosynthetic apparatus in CAM. In IP Ting, M Gibbs, eds, Crassulacean Acid Metabolism. American Society of Plant Physiologists, Rockville, MD, pp 112–127
- 14. RAYDER L, IP TING 1981 Carbon metabolism in two species of Pereskia

(Cactaceae). Plant Physiol 68: 139-142

- RAYDER L, IP TING 1983 Shifts in the carbon metabolism of Xerosicyos danguyi H. Humb. (Cucurbitaceae) brought about by water stress I. General characteristics. Plant Physiol 72: 606-610
- RAYDER L, IP TING 1983 Shifts in the carbon metabolism of Xerosicyos danguyi H. Humb. (Cucurbitaceae) brought about by water stress II. Enzymology. Plant Physiol 72: 611-615
- 17. RAYDER L, IP TING 1983 CAM-idling in Hoya carnosa (Asclepiadaceae). Photosynth Res 4: 203-211
- RITTENBERG D, L PONTICORVO 1956 A method of determination of the ¹⁸O concentrations of the oxygen of organic compounds. J Appl Radioactive Isotopes 1: 208-214
- STERNBERG L, MJ DENIRO 1983 Isotopic composition of cellulose from C₃, C₄, and CAM plants growing in the vicinity of one another. Science 220: 947-949
- STERNBERG L, MJ DENIRO, HB JOHNSON 1984 Isotope ratios of cellulose from plants having different photosynthetic pathways. Plant Physiol 74: 557-561
- STERNBERG L, MJ DENIRO, IP TING 1984 Carbon, hydrogen, and oxygen isotope ratios of cellulose from plants having intermediary photosynthetic modes. Plant Physiol 74: 104-107
- STUMP RK, JW FRAZER 1971 Simultaneous determination of carbon, hydrogen, and nitrogen in organic compounds. Nucl Sci Abstr 28, 746
- SZAREK SR, HB JOHNSON, IP TING 1973 Drought adaptation in Opuntia basilaris. Plant Physiol 52: 539-541
- TEERI J 1982 Photosynthetic variation in the Crassulaceae. In IP Ting, M Gibbs, eds, Crassulacean Acid Metabolism. American Society of Plant Physiologists, Rockville, MD, pp 244-259
- TING IP, JH BURK 1983 Aspects of carbon metabolism in Welwitschia. Plant Sci Lett 32: 279-285
- TING IP, M GIBBS (eds) 1982 Crassulacean Acid Metabolism. American Society of Plant Physiologists, Rockville, MD, p 316
- TING IP, L RAYDER 1982 Regulation of C₃ to CAM shifts. In IP Ting, M Gibbs, eds, Crassulacean Acid Metabolism. American Society of Plant Physiologists, Rockville, MD, pp 193-207
- TING IP, L STERNBERG, MJ DENIRO 1983 Variable photosynthetic metabolism in leaves and stems of Cissus quadrangularis. Plant Physiol 71: 677–679